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Abstract—The paper is concerned with the structural mechanics of pretensioned saddle-shaped cable nets
of the type shown in Fig. 1. Such nets are normally regarded as being non-linear systems; but it is shown
that their behaviour may be described satisfactorily in terms of two distinct, and practically independent,
sets of extensional and inextensional modes. Each set of modes may be studied by means of suitable linear
analysis, and the eigenmodes may be found without difficuity. The stiffness of the extensional modes
derives from the elasticity of the members, and is practically independent of the level of prestress in the
net. In contrast, the stiffness of the inextensional modes is independent of the elasticity of the members; it
derives from geometry-change effects and is directly proportional to the level of prestress in the net.
Usually, the most compliant inextensional mode of a net made from steel cables will be much less stiff than
the extensional modes; but the circumstances of this are determined by the value of a single dimensionless
group. An experiment performed in the laboratory on a small-scale model net confirms the theoretical
results. The paper concludes with a short discussion on the applicability of the results of this paper to
pretensioned cable nets in general.

1. INTRODUCTION
The aim of this paper is to elucidate the structural mechanics of saddle-shaped cable nets.
Figure 1 is a schematic view of such a cable net: it shows the two sets of elastic cables, slung
between rigid abutments, which are initially prestressed against each other when the net is free
from external loads.

How does the assembly respond when arbitrary external loads are imposed upon it? How
does the assembly deform, and how do the tensions within the system change in response to
external loads?

The conventional answer to these questions is conditioned by the frequent assertion in the
éxtensive literature (c.g. [1-3]) that cable nets are non-linear systems, since in general the
equilibrium equations must be set up with respect to the deformed configuration. It then follows
that there are no simple answers to these questions; and if computations are to be done they
must be performed numerically by means of powerful non-linear computer routines.

The main object of this paper is to show that, on the contrary, the behaviour of a cable net
under load can be described in a relatively straightforward and simple way, at least as a first
approximation. The key to the situation is that cable nets of the type shown in Fig. | have two
distinct modes of action; and each of these may be understood in terms of the behaviour of a
separately linear system. Once this point has been grasped, it is a relatively simple matter not
only to calculate the response of the cable net to various types of imposed loading—at least as a
first approximation—but also to determine the eigenmodes and simple formulae for the
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Fig. 1. Saddle-shaped cable net. The abutments are rigid.
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corresponding stiffness of the net in its two distinct modes of action. But the aim of the paper is
not merely to catalogue results which may be obtained in this way. In many practical nets the
stiffnesses of the system in the two basic modes of action will differ by about an order of
magnitude; and the paper explores the dimensionless group which determines the magnitude of
this factor.

For the sake of definiteness we shall use a specific example, as shown in Fig. 1. And in order
to simplify the necessary calculations we shall further regard the net as shallow, using this term
in the way in which it is widely used in the theory of shell structures[4).

There is, of course, a danger that by restricting attention to a specific example and then
making some simplifying assumptions, we may rob ourselves of the possibility of making
observations which are generally applicable. But it seems clear that the main features of
behaviour of cables nets survive this process (see Section 13) in much the same way that the
main features of shell theory may be studied, at least qualitatively, by means of the shallow-
shell approach.

The analysis is entirely statical throughout. Nevertheless, the modal stiffness formulae
which are developed may readily be adapted for dynamical purposes once the mass of the
system has been specified. The analysis disregards any structural effects which may be due to
the application of cladding to the net.

The layout of the paper is as follows. After some preliminaries in Section 2, Section 3 uses
well-known results of linear algebraic analysis to determine the numbers of inextensional and
extensional modes, respectively, for a given net. Section 4 introduces the useful idea of the
“plane comparison net”, which will facilitate some later calculations, and Section 5 describes
the kinematical features of the inextensional modes of a curved net. Sections 6-8 are concerned
with the stiffness of extensional modes of a curved net and the stiffness of inextensional modes
of plane and curved nets, respectively: in each case the eigenmodes and their corresponding
stiffnesses are determined. Section 9 shows that the “softest” inextensional mode is normally
much more compliant than the various extensional modes, and investigates the circumstances in
which the two kinds of mode may have stiffness of the same order. In Sections 10 and 11 two loose
ends from the preceding work are tidied up. Section 12 describes a simple experiment which
confirms the analytical work, and the paper concludes with some general remarks in Section
13.

2. DESCRIPTION OF ACABLE NET

Before we can begin the analysis we must describe the system and introduce some
nomenclature. The net consists of m (=2) cables running in one direction and n (=2) cables
running in the other: see Fig. 1. All of the cables lie in vertical planes. They are securely
attached to rigid abutments at their ends, and they are firmly connected together at the nodes
where they intersect. It will be convenient to refer arbitrarily to the family of m ‘“hanging”
cables which are concave upwards as the longitudinal cables, and to the other family of n
“bracing” cables as the transverse cables.

For the sake of simplicity in the subsequent analysis we shall regard the distances along all
cables between successive nodes as being roughly equal; and we shall also assume that the
small angles turned through by the cables at the nddes are approximately equal for all cables.
There is no difficulty in the adaptation of the detailed formulae of the present paper to nets
whose two sets of cables have different characteristics.

In practice, of course, the cables of a net are continuous. For the purpose of analysis,
however, it is more convenient to regard the cables as strings of straight bars which are freely
pivoted at the nodes and the abutments, by ideal frictionless joints. The imposition of
frictionless joints is a satisfactory idealisation of an extremely slender member such as a cable.

For some purposes it will be satisfactory to regard the bars as being rigid, or inextensional.
But for other purposes it will be necessary to take into account the elasticity of the bars: we
shall do this by relating the elongation ¢ of a bar (with respect to its initial, prestressed state) to
the change in tension AT by means of the elastic stiffness AE/!:

AT = (AE/l)e. )]
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Here A, | and E are, respectively, the cross-section area and length of the bar, and the Young's
modulus of the material of which the bar is made. It will be satisfactory for present purposes to
adopt the same value of (AE/]) for every bar of the net.

In general we shall not refer hereafter to the constituent cables of the net, but to the strings
of the bars into which we idealise it. We shall also refer to the joints as “nodes”.

Sometimes we shall refer to an external force or load W which is applied to a joint or mode
in the normal direction. By this we shall mean normal to the plane which passes through the
node and is closest, in the r.m.s. sense, to the four neighbouring nodes. But for most purposes,
as indeed in the “‘shallow shell” theory, there is no crucial difference between the “normal” and
“vertical” directions.

We shall describe the distortion or deformation of the net mainly by means of the set of
“normal” components w of displacements of the joints. The positive sense of both W and w is
usually downwards.

3. THECABLE NET AS A PRETENSIONED MECHANISM

In general we must expect that the application of a set of loads W at the nodes will be
resisted to some extent by changes of tension in the bars; that consequently there will be elastic
changes of length of these bars; and that these extensions will contribute towards the
displacements of the joints.

Such an expectation is misleading in the present case, although it cannot be faulted in
relation to many conventional structures composed of rods and joints. The assembly under
consideration is not a structure in the ordinary sense, but a pre-tensioned mechanism with a
number of degrees of freedom of order n m. More specifically, the assembly can undergo smali
distortions in which the lengths of the members do not change; and these “infinitesimal”
distortions are known as inextensional modes.

Linear algebra is the proper tool for studying the existence of such modes in an arbitrary
assembly of rigid (inextensional) rods and frictionless joints: see {1}, Section 4.1, and [5]. Thus,
a combination of the equations of equilibrium of the assembly with the equations of kinematics
of small distortion by means of the principle of virtual work leads to the general result that in
an assembly of b rods connected to each other at j joints and to an arbitrary extra number of
points on a rigid foundation,

Jj~b=f-s. )
On the r.h.s. of this equation f represents the number of degrees of freedom (=0) of the
assembly as a mechanism, while s is the number of independent states of self-stress (=0) in
which the members may be in a state of tension while the joints carry zero external load.
In relation to the assembly of Fig. 1,
j=mnand b=n(m+1)+m(n+1)
by inspection; and so
f-s=mn-m-n. (3)
In the present case it is easy to show that there is precisely one state of self-stress: for if the
tension in any one bar is given, the tension in every other bar may be found by using the
equations of equilibrium of the (unloaded) joints in turn. (The fact that there are apparently
more equations of equilibrium than are needed for this purpose will be discussed briefly in
Section 13.) Thus
s=1, 4)

and hence, from (3)

f=(m—-1)Xn-1). ®)
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This gives the number of degrees of freedom of the infinitesimal modes for the assembly shown
in Fig. 1.

Now in general, bar-and-joint structures assembled from bars of arbitrary length usually fall
into one of three classes, which may be described as follows:

(a) redundant structures having no kinematic freedom (f = 0) but several states of self-stress
(s>0),

(b) Mechanisms having several degrees of freedom (f > 0) but no states of seif-stress (s =0),

(c) statically determinate, just-stiff structures having neither kinematic freedom nor states of
self-stress (f =0 and s = 0). Equations (4) and (5) indicate that the present assembly falls into
none of these usual categories. It is an example in which both s>0 and f>0: there are
simultaneously non-zero states of self-stress and non-zero degrees of freedom. Apart from
trivial cases where distinct parts of an assembly lie in classes (a) and (b), respectively, this
fourth class occurs only when the lengths of the bars satisfy certain restrictions[5). Thus, in the
present example it would not be possible to connect the assembly of rigid bars together if any
one bar were any shorter than it actually is: and it seems clear intuitively that this feature leads
to the possibility of sustaining a state of self-stress in the “tight” assembly. In contrast, on the
other hand, if any one bar were made longer than it actually is, the assembly would become
“loose™”: the value of s would then become zero and the value of f would be 1 greater than that
given by (5), and the assembly would revert to class (b).

The preceding remarks are based firmly on the supposition that every rod is strictly
inextensional. The rods of the actual assembly are all elastically deformable, and we may
therefore argue that onto any individual joint may be imposed independently a small, arbitrary
normal component of displacement. In this sense the assembly has a total of mn degrees of
freedom. We thus find that since (m —1)(n — 1) of them are purely inextensional, as demon-
strated above, the remainder must involve some extension of the bars. Hence we conclude that
the assembly has two distinct types of mode of normal deformation:

(m — 1}(n — 1) inextensional modes
and 6)

m+ n—1 extensional modes.

Our main task in the remainder of the paper will be to study separately the mechanics of the
two different types of mode of deformation. We shall investigate what types of loading pattern
are associated with each of the two families of distortion, and the corresponding quantitative
relationships between load and displacement.

4. MECHANICSOF APLANE “COMPARISON NET”

It is useful to pursue our study of the cable net of Fig. 1 by considering next the plane
“comparison net” which is shown in Fig. 2. Like the curved net, it consists of m longitudinal
cables intersecting n transverse cables and connected to rigid abutments; but in this case all of
the cables are straight and lie in a single plane. In particular, the numbers of bars and joints are
exactly the same as before.

Now in this plane net every straight cable may sustain independently an arbitrary tension,
without the equilibrium condition for the joints of the unloaded net requiring tension in any
other member. Thus we find that for the tight, plane net

s=m+n. )

Therefore, in view of the general relationship (2) the number of inextensional modes (all
infinitesimal) in this case is given by:

f=mn 8)

Thus all of the mn independent out-of-plane modes are inextensional for the plane net: there
are no out-of-plane extensional modes for this type of net.
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Fig. 2. Planc “comparison net”, having the same % layout as the saddie-shaped net. The abutments are

The plane comparison net enables us to clarify several points in relation to the original
curved net, as follows.

First, the inextensional modes are easy to visualise, since each node can undergo a small
displacement normal to the net without imparting significant strain to the adjoining members.
Of course, there must be strictly some change of length in any operation of this sort, since the
straight line is the shortest distance between any two fixed points. The important point here is
that the strains incurred are of order (w/l)?, where ! is the length of a bar; and since this is
negligible provided the value of w is sufficiently small, it is appropriate to call the modes
“infinitesimal’’. In contrast, the strain incurred in the members of an ordinary redundant or
statically determinate structure (classes (a) and (c), above) are of order w/l when displacement
w is imposed on a given joint. Similar remarks apply to the “inextensional” modes of the
curved cable-net: for small displacements these incur negligible strain.

Second, it is obvious in the plane net that if the condition w =0 is imposed on every node,
the assembly still has 2 mn degrees of freedom in relation to in-plane displacement of the
joints. These modes plainly require changes in length of the bars, and are therefore clearly not
inextensional: when loads acting in the plane of the net are applied to the nodes, the net
obviously responds in terms of in-plane modes and not in terms of out-of-plane modes. In
contrast, when loads are applied tangentially to a curved net, in general there will occur some
displacement of joints in the normal direction. The big difference here between plane and
curved nets is that in general the nodes of a curved net must be restrained kinematically from
normal displacement if purely tangential displacements are to occur; and such kinematic
restraints would in general induce normal reactions to the net in response to arbitrary tangential
loading. In this paper we shall not be concerned with purely tangential displacements of curved
cable nets. These artificial, constrained modes correspond broadly to Lamb’s “first class” of
“wholly tangential” modes of displacement of shells when normal displacements are
forbidden[6].

S. INEXTENSIONAL MODES OF CURVED NETS

The striking difference between the number of inextensional modes in the curved net and
the plane net ((m — 1)(n ~ 1) and mn, respectively) which we have demonstrated by application
of the general relation (2), may be demonstrated by kinematic arguments in the present
examples by means of the simpler two-dimensional inextensional modes of straight and curved
strings of bars, respectively. Figure 3(a) shows a straight string of bars connected by n joints
between rigid abutments. A single joint of this assembly may be given a small transverse
displacement, which induces only second-order extensions of the bars, as we have seen. There
are clearly n independent modes of this kind, one for each of the interior nodes.

Consider now the uniform plane “curved” string of rigid bars shown in Fig. 3(b). There are
n +1 equal bars, each of length /, and in the original curved configuration the small angle «
between adjacent bars is equal at all nodes. If we attempt to give a small (in-plane) normal
displacement w to a single node (while keeping w =0 at all other nodes) we shall be unable to
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Fig. 3. (a) straight and (b) curved strings of rigid bars between fixed abutments and connected at a interior
nodes. Displacements are confined to the plane of the diagram.

do so if the bars remain rigid. But if we now disconnect the pin at the joint which is being
displaced, the move becomes possible, and by elementary kinematics we find that a small gap of
aw opens up at this joint. And indeed, a gap of essentially the same amount would have opened
up at any other joint if the single disconnection had been located eisewhere.

It follows directly that if one joint in a plane unbroken chain of rigid bars as in Fig. 3(b) is
given a small outward displacement w, this can certainly take place if any other joint is given an
inward displacement of the same magnitude. And moreover, this result may be generalised into
the condition

5:‘, wi=0 ©)

for the inextensional displacement of the uniform plane chain of Fig. 3(b) subjected to small
normal displacements w;(i = 1...n) at the n joints. The coefficients of w; implicit in (9) are equal
{and hence unity) if and only if the angles « between the bars are all equal.

It follows immediately from this that the curved chain of rods has n — 1 degrees of freedom
under small displacements (since condition (9) must be satisfied), in contrast to the n degrees of
freedom of the straight string. Furthermore, we can see by an extension of this argument that
the doubly curved cable net of Fig. 1 has (m—1)}n—1) degrees of freedom, since small
displacements may be applied at (n—1) joints of (m~1) of the longitudinal strings. One
longitudinal string must be left free to satisfy the condition (9) for the transverse strings, and
the single remaining node must adopt a value of w which sets the global sum of displacements
to zero. We have thus verified (6) for the curved net by purely kinematic reasoning.

Consider next an inextensional mode of the curved net in which a certain joint is given a
positive displacement w. This joint, in particular, lies on two strings. Suppose that the condition
(9) for each of these strings separately is met by giving one other joint a compensating negative
displacement. Then the condition (9) for each of the other two strings which pass through these
two joints may be satisfied by having a positive displacement at the joint where these two
strings intersect. This pattern of displacement, involving normal displacements of equal
‘magnitude but alternating sign at the four corners of a rectangle, and shown schematically in
Fig. 4(a), may be regarded as an elementary inextensional mechanism of the system. Hence, if
this quadrangle of displaced joints is shrunk to an elementary square (Fig. 4b), we can see
immediately that there are exactly (n — 1){m — 1) independent inextensional mechanisms of the
system. Again this agrees with (6).

6. EXTENSIONAL MODES OF THE CABLE NET

Our next task is to investigate the extensional modes of the cable net. It is most satisfactory
to do this by considering the response of the net to certain definite patterns of loading. As we
have seen already, there are m + n+1 independent extensional modes. How may these be
characterised?

It is clear that if a pattern of loading is to produce a purely extensional mode, it must be
incapable of exciting any of the (m — 1)}(n — 1) inextensional modes: that is, the pattern of loads
must be orthogonal to every inextensional mode. The simplest loading set which satisfies this
requirement is that in which only one string, say a longitudinal one, is loaded by equal normal
forces applied to every joint of it. This remark may be verified by inspection. Let us call this
type of equal loading of all joints on a single string uniform loading of the string. Furthermore,
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(@) (b)

Fig. 4. Schematic representation of inextensional modes for a net like Fig. 1. The nodes labelled + move
upwards and those labelled — move downwards. Other nodes do not move (normal to the net). The ends of
the cables are fixed to rigid abutments. (a) A general case. (b) A compact case.

it is clear that no inextensional mode will be excited if each longitudinal string is loaded
uniformly, but independently. Such a loading scheme has m independent parameters, i.e. one
for each string. The same argument applies equally, of course, to uniform loading of the n
transverse strings. Thus there are, apparently, altogether m + n disposable parameters in the
description of loading patterns which are orthogonal to the inextensional modes. But this is
contrary to our previous result that there are m+ n—1 independent extensional nodes. The
paradox is resolved by the remark that the unique loading pattern in which equal loads are
applied at every one of the nm nodes may be regarded either as a set of uniformly loaded
longitudinal strings or a set of equally loaded transverse strings. It is one loading pattern, not two;
and it follows immediately that the number of independent loading parameters is actually
m+ n— 1, in agreement with our previous resuit (6).

Let us now investigate the way in which the net responds to uniform loading of a single
longitudinal string by equal loads W applied at every node.

In Fig. 5 this string has been shown detached from the net. Each node of the string is shown
to carry a fraction (1 - 8) of W, while the corresponding node of the other part of the net
carries the remainder. The fraction 8 is unknown as yet, and we shall determine its value by a
kinematic matching of the displacement of the string and the remainder of the net. We have
already argued that this type of net has a single redundancy (s =1); and the parameter 8
represents this redundancy for the loading under consideration.

The tension in each bar of the net may be calculated by means of the equations of
equilibrium. Thus, when changes of geometry on account of loading are ignored, the tension in
each bar of the loaded string is equal to

(1-B)Wla, (10)

(1-pw

(1-pw
(1-8)W

(1-pw
Fig. S. Isolation of a single longitudinal cable for the determination of the stiffness of an extensional mode.
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and the tension in each bar of the remainder of the net is equal to

~BWa. (11

The latter follows from the equations of equilibrium of the loaded joints of the remainder,
together with the observation that no other joint carries any external load.

These tensions are all in addition to the original pretension in the assembly, which we shall
assume to be greater in magnitude than the compressive force which any bar is called upon to
sustain on account of the applied loads W. The change in extension of every bar in response to the
applied load is given by (1).

The next task is to obtain an expression for the kinematic compatibility of the loaded cable
and the remainder of the net. In this we shall employ the principle of virtual work. At first it
may seem obvious that we must match the displacement of every node of the loaded string
separately to that of its counterpart in the remainder of the net. But such a procedure would
generate n expressions for the determination of the single parameter 8. And indeed, if we were
to attempt to find the displacement of a single node of either the loaded string or of the
remainder of the net, we would immediately run up against the problem that the application of a
single unit load to a joint (for the purposes of calculation of a displacement by means of virtual
work) would excite one or more of the inextensional modes of the system. The only way of
avoiding entirely the excitation of inextensional modes is to apply a unit load to every joint of
the loaded string: hence, after all, we can obtain only one condition of compatibility.

When a unit load is applied to every joint of the isolated longitudinal string, the tension in
every member of the string is 1/o. Hence, on application of the principle of virtual work we find

> w=(n+1)1-p) WIAEa>: (12)

the summation is for the n joints of the loaded string.
A similar calculation for the remainder of the net gives

w=Q2nm+m-1)gWI AEa*: 13)
2z

the first term on the r.h.s. is the number of bars in the remainder of the net. Hence, on putting
the two expressions together, we find

B=(n+1)]Qmn+m+n). (14)

Having determined the value of B in a given case we may then compute Ew for the loaded
string; and also, by a further application of virtual work, Zw for any other string of the net.
When m > 1 and n > 1 (14) reduces to the approximate relation

B=12m. (1%

This expresses the fact that the compliance of the remainder of the net is proportional to the
number of other cables parallel to the single loaded cable; and the factor 2 corresponds to the
fact that the rods in both sets of strings contribute equally to the compliance of the remainder.
Formula (14) may be used in relation to uniform loading of a transverse cable if m and n are
interchanged.

All loading patterns which do not excite inextensional modes may be built up by super-
position from uniformly loaded strings, and the associated displacements may be found by
appropriate use of the expressions derived above in any given case. It is most instructive,
however, to investigate two particularly simple special cases which may be assembled in this
way.

Consider first a case in which one longitudinal string is loaded uniformly by joint loads W,
as described above, while a second longitudinal string is loaded uniformly by forces — W, i.e.
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by forces of the same magnitude but of opposite sense. A single parameter describes the
tension in the transverse strings for this loading case, and it follows immediately by super-
position of the preceding results that g8 =0, i.e. that there is zero tension in the transverse
strings. Thus each of the two longitudinal strings carries the load applied to it unaided, while the
transverse and all other longitudinal strings are unstressed (apart, of course, from the initial
stress in the system).

The key point about this particular case is that the two loaded longitudinal strings deform in
such a way that the transverse strings undergo purely inextensional deformation. Thus no
(extra) tension is developed in any of the transverse strings; and the two loaded longitudinal
strings act essentially independently of the remainder of the net.

This idea may be extended readily to the general case in which each of the m longitudinal
strings is loaded uniformly, but independently of the other, by nodal loads W;(i = 1...m). In any
case where

f: W, =0, (16)

the transverse strings are not stressed on account of the applied loading, and each longitudinal
string deflects as if it were an isolated string, i.e. according to (12) with g =0, and with its own
value of W, Note in particular that the displacement of each longitudinal cable is directly
proportional to the load applied to it when (16) is satisfied.

Second, consider the case where all longitudinal strings are loaded uniformly by equal joint
loads W, i.e.

Wi=W, i=L.m an

By superposition of the preceding results we find that each longitudinal string now carries
tension on account of loads (1 — mB)W acting on an isolated string, where 8 is given by (14).
Thus we find, for a typical longitudinal string,

> w=(n+1X1 - mg) Wl AEa?

_n+l)Ym+1) WI
(2mn+m+n) AEa®

(18)

The summation is over the n joints of the string. It follows that the mean joint displacement for
the entire net is (1/n) of this, so that

W= (n+Ym+1) W
(2mn + m + n) AEa?

19)

Note that this expression is unaltered by the interchange of m and n, as indeed we expect for
this case of uniform loading over the entire net.

Now if a particular pattern of loading were to produce nodal displacements such that the
displacement of every joint was directly proportional to the load applied at the joint, we would
describe it as an eigenmode of the system; and we would describe the common load/displace-
ment factor as the corresponding modal stiffness.

Each of the special loadings cases (16) and (17) fulfills this condition, provided we overlook
the fact that our calculation strictly gives the mean value, W, of the nodal displacements of the
string instead of the individual displacements.

With this proviso in mind, we may compute the mean modal stiffness K, for the case of
uniformly loaded longitudinal strings satisfying (16) by putting 8 =0 in (12):

' (20)
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2
~ AL @
for a large net.

In the case of uniform loading over the whole net, the corresponding quantity K¢, may be
obtained from (19):

_W_Q@mn+m+n) AEd?
Ke= G = Geixm+D 1 @2)
2
- 2AEa 3)

I

for a large net.

In these expressions the subscript E denotes an extensional mode, and subscripts 1 and 2
distinguish the two different types of extensional mode. An expression similar to (20) may be
written down for the case of uniformly loaded transverse strings with

}"r‘, W, =0. 24)

In either case the nodal stiffness is about one half of that for completely uniform loading. This
reflects the fact that only one of the two sets of cables is operational when (16) or (24) is
satisfied.

Altogether, then, there are (m —1) independent cases of uniformly loaded longitudinal
cables satisfying (16), (since the load on the nth cable is determined by the summation), (n — 1)
independent cases for uniformly loaded transverse cables satisfying (24), and the single case
(17) of uniform load at each nodal point of the net: m + n — 1 cases in all. Thus, by means of our
study of only two special cases we have determined the eigenmodes and the corresponding
mean nodal stiffnesses for all of the “extensional” loading cases.

Throughout this section we have explicitly ignored any contribution which initial prestress
may make to the net by virtue of small changes in geometry. We shall comment on this
simplification in Section 11.

7. STIFFNESSOF INEXTENSIONAL MODES OF APLANE NET

We examine next the mechanical behaviour of the net when it deforms inextensionally, in
the way which we have described so far only in terms of kinematics. We shall develop the
necessary physical ideas in stages, by means of a sequence of examples.

Let us investigate first the response of the two-bar system shown in Fig. 6(a) when a
transverse force W is applied to the central joint. The bars are of length [ and cross-sectional
area A, the material has Young’s modulus E, and there is an initial tension Ty, in the system. The
abutments are rigid.

Consider the state of the assembly when the central joint is given a displacement w, small in
the sense that w/l<1. By elementary geomefry we find that the strain in the bars=
1/2(w{I)? + terms of order (w/l)* and above, and hence that the tension T is now given by

T =Ty +3AEW/I)Y +.... (25)
Resolution of the forces acting at the joint gives
W =2Tw/l (26)
and hence, by (25),

W =2Ty(wll)+ AE(WIIY +.... Q@7
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Fig. 6. Simple systems for the investigation of the stiffness of the inextensional modes of a single cable.

For sufficiently small displacements, therefore, the response of the system to the applied load is
linear; and in this range the stiffness depends only on the initial prestress T, and not the elastic
constant AE of the bar: see [5], Figs 4 and 5.

In this respect the system behaves quite differently from a conventional redundant structure
under an arbitrary loading, where the stiffness of the system depends on the extensional
stiffness of the bars but not on any initial stress which may be present on account of the
redundancies.

For large displacements, of course, the cubic terms in w in expression (27) can become
important. For example, the first and second terms on the r.h.s. of (27) are equal when the
additional strain }(w/I)? is equal to the strain TJAE imparted to the originally stress-free bar
when the prestress T, was applied. We shall return to considerations of this sort later on; but
for the present we shall assume that the displacements are so small that we need consider only
the linear part of the structural response of “inextensional” modes.

We are concerned here with “geometry change” effects: transverse loads are carried not
primarily by changes in tension of the members but by small changes in geometry of the
system. This is the key to the understanding of the stiffness of inextensional modes of cable nets.

Consider next the behaviour of the pretensioned string of bars shown in Fig. 6(b). Again
there is an initial pretension of T, but now each of the n joints may be displaced independently
a small distance w normal to the line of the original configuration. Let w; be the displacement of
the ith joint. By resolving the forces acting on a typical joint we find that the load acting on the
ith joint, W, is given by

W= (T I~ iz +2w; = wiyy). (28)
Hence in general we may write
W =(T,/)Mw, (29)

where W and w are the column vectors W, and w; respectively, and M is the square matrix

_
2 -1 ]

-1 2 -1
M= ) ' . (30)

-1 2 -1
-1 2

— -

It is convenient to discuss the behaviour of the system in terms of its eigenvectors and
cigenvalues. It is easy to show that the n eigenvectors w;, (¢ = 1....n) of M are

Wiq = sin =L, G1)

while the corresponding eigenvalues A, are

4 sin’ (qm/2(n + 1)). 32)

SS Vol. 18, No. 10—B
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Thus the modal stiffness of the eigenmodes (31) of the system shown in Fig. 6(b) are

Kig = (TyDhg =0 i (E(p%“fi) g="lon 33)

Here the subscript I denotes an inextensional mode. Figure 7 depicts the eigenmodes of a string
of bars having 5 joints, together with the corresponding eigenvalue A, of M.

In general, when n is large, the lower eigenvalues of M are approximately equal to
@’ Tom*ll(n + 1)*: they are inversely proportional to the square of the half-wavelength of the
modeform.

The eigenmodes and the corresponding nodal stiffnesses for the entire plane comparison net
may be deduced easily from the above results. In order that the plane net shall model the
curved net as well as may be, let every string have the same initial pretension T,. Select any
one of the n eigenmodes for the isolated longitudinal strings, and any one of the m cigenmodes
for the isolated transverse strings, and arrange the amplitudes of these sc that the two sets of
strings intersect at every junction in the distorted configuration. At each node a transverse
force is required for equilibrium of each of the two strings passing through the node; and since
each of these separate forces is proportional to the displacement of the node, so also is the total
force. Consequently this mode is an eigenmode of the whole system and the corresponding
modal stiffness is the sum of the separate stiffnesses of the two string-modes.

There are # and m distinct eigenmodes for the longitudinal and transverse strings respec-
tively. These thus generate the entire set of mn distinct eigenmodes of the complete plane net.

8. STIFFNESS OF SOME INEXTENSIONAL MODESOFACURVED NET

We are now in a position to investigate the stiffness of the inextensional modes of the
curved cable net. We have previously seen that there are (m — 1)}(n — 1) inextensional modes of
this system, and that these may be generated from the (n — 1) and (m — 1) inextensional modes
of the initially curved longitudinal and transverse strings, respectively.

In view of the preceding analysis of the plane comparison net, therefore, it seems clear that
we should begin with an investigation of the eigenmodes of a single curved string. An
examination of the condition of equilibrium of a shallow pretensioned curved string whose
nodes have been displaced by small amounts from the initial configuration indicates that to a
first approximation eqn (28) holds for the response of a node to an applied normal load. It
follows that (29) also holds provided the displacement w; now also satisfy the condition
Zw,; = 0. Inspection of (31) shows that the even (“skew-symmetric”) eigenmodes (g = 2, 4, etc.)
satisfy this condition, but that the odd (“symmetric”) ones do not. Thus, approximately one
quarter of the eigenmodes which we have already found for the plane comparison net are aiso

(i) /——\ - 1.0

iy N N

» 3.0

3.732

Fig. 7. Eigenmodes for the system of Fig. 6(b). The numbers are proportional to modal stiffness.
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eigenmodes of the doubly-curved net. We shall briefly consider the remaining modes sub-
sequently. But let us first investigate particularly the inextensional mode which has the lowest
modal stiffness. It is clear that this is assembled from longitudinal and transverse string modes
having q =2, with an overall displacement pattern of the net in the form of a 2 X 2 chessboard.
By use of (33) we may write down the modal stiffness of this mode:

_ ﬂq ') ™ ) w }
Ky= ] {sm ("+l)+sm (m+1) . (34)
Or, on the assumption that n> 1 and m > 1,
_4rTy( 1 1
K=" (G i) ©3)

Here the subscript f denotes the fundamental inextensional mode of the curved net.

9. RELATIVE STIFFNESS OF EXTENSIONAL AND INEXTENSIONAL MODES

It will seem clear to anyone who has handled a simple model of a saddle-shaped cable net
made from string or wire, that the least-stiff or softest inextensional mode is much less stiff than
any extensional mode. It is of interest, therefore, to make a comparison between the nodal
stifiness of the extensional and inextensional modes which we have studied, in order to
discover what factors are involved in the determination of the relative stiffnesses.

For the sake of simpli¢ity we shall consider a large net, with n>1 and m>1; and
furthermore, in relation to the inextensional modes we shall consider a *“‘square” net, with
m = n. From (21) and (23) the nodal stiffness of the extensional modes are

Kg=(2)AEd’/l. (36)

Here, and in subsequent expressions, the 2 in parentheses is present for the uniform loading
mode (denoted in (22) by subscript 2), but absent from the other modes (subscript 1). From (35)
the modal stiffness of the most compliant inextensional mode is

K,,=8'n'2Tolln2. (37)

The ratio K/ Kg is thus given by

K 87T |
K~ () AEWS (38)
It is convenient now to define as ¢, the elastic strain in a typical bar due to the initial prestress T,,.
From (1):

& = To/AE. (39)
Equation (38) may then be written
K _2 &
2n

Now the total angle subtended by a longitudinal or transverse curved string with n nodes is na,
so the expression (na/2 1) represents the fraction of a full circle which is occupied by one of the
curved strings.

For example, if na = 60°, na/27 = 1/6 and

K _7n
Ke @
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For a steel cable we might have ¢ = 10, which gives K,/ K, = 1/30, very approximately.

If this example is typical, the fundamental or most compliant inextensional mode of a cable
net has a stiffness at least an order of magnitude less than that of the extensional modes.

It is important to realise, however, that the modal stiffnesses of the higher inextensional
modes are considerably greater than those of the fundamental inextensional modes (see (33)). In
the present example, therefore, many of the inextensional modes will be stiffer than the
extensional modes, if the number of strings is large.

Let us investigate the parameters which determine the relative stiffnesses of the two kinds
of mode. It is convenient to begin by devising a net for which the stiffness of the more
compliant extensional modes is approximately equal to that of the fundamental inextensional
mode. According to (4) this would be achieved if

o~ (g‘l)2 = (na)/40. @1)

w

Now suppose that each of the strings of the curved net of Fig. 1 is straight and just taut
between the abutments when there is zero initial tension, and that the prestress is then imparted
to it by pulling it into its basic curved configuration and connecting the nodes. Then, to a first
approximation when na €1 we have

€ =(na)’/24. 42

This is sufficiently close to the required condition {41} to give a simple physical interpretation of
the criterion.

Typically in practice the “dip” or sagitta of a cable is about one-tenth of the span, so
na =1. Hence, a cable net which satisfies (41) or (42) could readily be made from strings of
material such as rubber, which is capable of extending by at least about 3% in the elastic range.
But, clearly, the initial stretch of the steel cables of most practical tension-net structures is
considerably less than this. Hence we may conclude that the most compliant inextensional
mode in these structures will normally be considerably less stiff than the extensional modes.

Finally, we note that the dimensionless group which is represented by the r.h.s. of (38) and
(40) is closely related to the group A? which is used by Irvine[7] to characterise the behaviour of
a hanging cable.

10. SYMMETRICINEXTENSIONAL MODES

In Section 8 we remarked that the symmetric string-modes of the plane comparison net did
not satisfy the inextenstonality condition (9) of curved strings, and consequently that many of
the inextensional modes of the plane net were not directly applicable to the curved net. In order
to find the remaining inextensional modes of the curved net, it seems clear that we should begin
by seeking the symmetrical eigenmodes of the inextensional deformation of a curved string. But
here we encounter a paradox. There are in fact no “pure” eigenmodes of this kind. The nearest
we can get to a symmetric eigenmode is a mode in which the nodal loads are proportional to the
nodal displacements plus a small constant load. Thus, for modes of this sort we have

W=(T/HMw+c, Jw=0 (43)

instead of (29), where ¢ is a vector of constant elements. There is here a small interaction
between inextensional and extensional modes, in the sense that the uniform loads ¢ (which are
necessary in order to balance the equation in the presence of the constraint Tw = 0) are carried
by an extensional mode.

It is not difficult to find the odd “‘eigenmodes” which satisfy (43) when

W = Kw, (44)

where K is a scalar modal stiffness. In general, for ¢ =3,5..., they involve only a small
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departure from the corresponding modes in the straight string, and the value of K is always a
little smaller than the unconstrained value. Figure 8 repeats the “straight string”” modes of Fig. 7
for ¢ =3 and 5, and also shows the modes which satisfy (43) and (44) for a uniformly curved
string. The case ¢ = 1 does not fit into this pattern of course: there is no simple modification of
(31) with q =1 which will satisfy (43) and (44), and this mode is lost when we change from a
straight string to a curved one: but see section 11.

The mode stiffnesses of the odd “cigenmodes” of curved strings are all a littie less than
those for straight strings. The largest discrepancy is about 8%, in the case n, ¢ =5,3. This is
shown in Fig. 8, where the numbers correspond to modal stiffness, as in Fig. 7. The modification
of the symmetric modes in order to enable them to meet the condition of inextensionality (9) of
a curved string is analogous to a problem in the dynamics of suspended cable: see [7], chap.3.

11. COUPLING BETWEEN THE TWO FAMILIES OF MODES

We have discussed separately the mechanics of a cable net in its inextensional and
extensional modes of deformation. We ought now to consider what happens when two patterns
of loading in the two different classes are applied to the net simultaneously. Thus, for example,
the net may sustain equal loads at all nodes, onto which is superposed a pattern of loading
which excites the fundamental inextensional mode. Does the presence of the uniform load alter
the nodal stiffness of the inextensional mode?

Since the stiffness of the inextensional modes depends on the tension in the strings working
on geometry changes, and since the tension in the strings is altered by uniform loading of the
net, the answer to this question in general is yes. However, the uniform load increases the
tension in one set of strings and decreases the tension in the other set, so the contributions to
the nodal stiffness of inextensional modes from the two sets of strings are to some extent
self-cancelling. And indeed, we find that for a net having n = m, and the same value of « for the
two sets of strings, the sum of the two sets of string tensions is independent of the magnitude of
the uniform loading: hence in this case the nodal stiffness of the fundamental inextensional
mode is quite unaffected by the uniform load.

The situation changes radically, of course, if the uniform loading is so large that one set of
strings loses its tension altogether. These strings then go slack, the condition of inextensionality
no longer applies to them and the other strings are free to execute an entirely different set of
modes.

Another aspect of mode-interaction is involved when the loading of the net is purely
uniform. The nodal stiffness of the uniform extensional mode has been calculated on the
assumption that the changes of geometry of the net were insignificant in relation to the
computation of tensions via the joint equilibrium equations. The geometry-change effect in this
case is closely related to the fundamental inextensional mode of the plane comparison net. This
mode was one of those which was not relevant to the inextensional deformation of a curved
net; but it now reappears in association with the fundamental extensional mode. However,
since the nodal stiffness of this mode is only about one quarter of that of the fundamental
inextensional mode of the actual cable net, which itself has a small stiffness in comparison with
the uniform extensional mode, it is clear that the “geometry-change” contribution to the
stiffness of the fundamental extensional mode will usually be insignificant.

O,

N\ to\
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(i) .//\\ ,,/\ 1.08
= (2.0)

~
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Fig. 8. Modified symmetric “cigenmodes” for a curved string, corresponding to cases (iii) and (v) of Fig. 7.
The broken curves are taken from Fig. 7. For the meaning o_f the numbers, see text.
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12. AN EXPERIMENT

Figure 9 shows the layout of a simple cable net #,m =2,2 which has been studied
experimentally by Carstairs and Shipley as an undergraduate project. The cables were steel
“piano wire” of dia. 0.38 mm, and they were soldered together at the nodes. The ends of the
wires passed through small holes in a very stiff surrounding steel frame and were connected to
standard guitar “‘machine-heads” mounted securely onto the frame. The horizontal distance
between abutments was 533 mm, the vertical distance between the lower and upper abutment
points was 116 mm, ant the horizontal square ABCD had sides of 153 mm.

The aim of the experiment was to observe the nodal stiffness of the net for two different
loading patterns, and with various degrees of pretension of the cables. The two loading patterns
were:

(i) “‘Skew": loads of equal magnitude at all four nodes, applied downwards at A and C and
upwards at B and D.

(if) “Uniform”: equal vertical (dlownward) load at the four nodes.

Loads were applied by dead-weight, together with the use of pulleys for the upward-acting
forces. Vertical deflections of the nodes were measured by four dial gauges connected to the
nodes by suitable threads. Each dial gauge exerted a small and roughly constant force when its
plunger was moving in one direction, and a force of a different value when moving in the other
direction. The four dial gauges were of the same type, and they behaved equally in this respect.
The dial gauges produced a relatively large hysteresis effect on the system when the direction
of loading was changed; but since the well-defined slopes of the linear load/deflection curves
were practically the same both on loading and on unloading in all tests, this hysteresis was not
detrimental to the experiment.

The tension in the wires could be adjusted by turning the machine-heads. After the net had
been set up accurately in its nominal configuration, all eight machine-heads were always turned
in register. At any setting of the machine-heads the initial tension T in the horizontal members
was deduced from a separate experiment in which a vertical load was applied at the mid-point
of one or more of the horizontal stretches of wire, and the corresponding node-stiffness was
measured (see Fig. 6a). In all tests, including those for the determination of T, loads were
increased in about six equal increments and then decreased. In all tests the load/deflection
curves had a well-defined linear form.

The net was not “shallow”, since the angle a subtended by wires passing through a node
was about 16°. Nevertheless, the behaviour of the net was in broad agreement with the theory
presented in this paper. Node-stiffnesses are plotted in Fig. 10 for the two distinct modes. The
following points may be observed.

(a) The stiffness of the “skew” mode is directly proportional to T,, in accordance with the
theoretical prediction for an inextensional mode.

(b) The stiffness of the “uniform” mode is considerably greater than that of the in-
extensional mode, and relatively insensitive to the value of T,. Note, however that it appears to
vary linearly with T, in accordance with the analysis which has been sketched in Section 11.

s

Fig. 9. Schematic view of the small-scale experimenta! net.
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Fig. 10. Experimental observations. T, is the mean measured initial tension in the horizontal members, and

K is the nodal stiffness, viz. the mean value of d Widw for the four joints. @ symmetric loading, W at each

node. @ skew loading, W, - W, W, — W at A, B, C, D. Linel: theoretical stiffness of the inextensional

mode. Line 2: theoretical stiffness of extensional mode. Line 3: as Line 2 but taking into account also the
geometry-change effect.

Also shown in Fig. 10 are the predictions of a simple theory like that of the present paper,
but taking more accurate account of the trigonometry of the net. On the whole, the agreement is
satisfactory. The reduced stiffness of the “‘uniform™ mode observed for low values of initial
tension may be due to extra compliance of the wire near the soldered joints on account of
highly localised flexural effects.

13. CONCLUDING REMARKS

The simple net of Fig. 1 has been used as an example for a demonstration of the main
features of behaviour of pretensioned cable nets. The contrast between the extensional and
inextensional modes is particularly striking in this type of net.

It seems clear that all pretensioned cable nets involving two intersecting sets of cables will
show broadly similar effects. But in systems where the main net is stretched between “edge”
cables which are themselves anchored at only a few points (e.g. [8], p. 60), the number of
extensional modes will clearly be a smaller fraction of the total number of modes than in nets of
the kind shown in Fig. 1. And indeed, since it is unlikely that the special loading patterns which
are necessary to excite the (pure) extensional modes will occur in practice, these particular
modes will be of little practical significance.

The most novel feature of this paper is the linear analysis of the inextensional modes of the
net. In relation to these modes, the net is not a structure in the usual sense, but a mechanism;
and it is this feature which enables us to sidestep most of the complications inherent in the
well-known field of analysis of “‘geometrically non-linear structures”. The linear analysis of the
inextensional modes is not valid for large deflections, for which the modes are not strictly
inextensional, and involve changes in tension. The practical limits on the applicability of the
linear analysis appear to depend on the level of prestrain in the wires, as shown in the simple
example at the beginning of Section 7. It is possible that a point load applied to a single node of
the net of Fig. 1 would exhaust the linear range of the inextensional modes, for a given level of
prestrain, at smaller defiections than a more widely distributed pattern of loading. This is an area
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for further research. But the linear analysis should prove useful to engineers as a tool for
investigating the behaviour of nets, in a first approximation, even for concentrated loads. An
obvious area for application of the analysis is the study of the low-frequency modes of vibration
of a net, which are at risk of excitation by fluctuating wind-loading.

In section 3 it was demonstrated that the curved net had only one degree of self-stress, but
that there were more equations of equilibrium than were necessary for the determination of the
bar-tensions in terms of the given tension in a single bar. It is easy to show that the excess of
these equations is (m — 1)}(n — 1). These could be used to solve for the unique configuration of
the unloaded net in terms of the (m — 1){(n — 1) inextensional modes, if this were not known ab
initio. This problem is generally known as “‘form-finding”. We have not been concerned with it
here, as the initial configuration of the net of Fig. 1 is obvious.
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